D

Assembly Methods

JIC 37° and SAE 45° Flare

Parker's recommended assembly method for JIC 37° flare and SAE 45° flare is the Flats From Wrench Resistance (FFWR) method. This includes steel as well as other materials.

The torque values assigned by size are for reference only, and are only applicable to Parker system components using the FFWR method with trivalent chromate passivation on zinc plating of carbon steel components without lubrication.

	Flats From	Swivel Nut Torque		
Dash Size	Wrench Resistance (FFWR)	Newton Meters (Ref)	Pound Feet (Ref)	
-4	2	18	13	
-5	2	23	17	
-6	1-1/2	30	22	
-8	1-1/2	57	42	
-10	1-1/2	81	60	
-12	1-1/4	114	84	
-16	1	160	118	
-20	1	228	168	
-24	1	265	195	
-32	1	360	265	

Seal-Lok®

Parker's recommended assembly method for Seal-Lok® connections is the torque method.

Dash	Swivel Nut Torque		Flats From
Size	Newton Meters (+10% / -0)	Pound Feet (+10% / -0)	Wrench Resistance (FFWR)
-4	25	18	1/2 - 3/4
-6	40	30	1/2 - 3/4
-8	55	40	1/2 - 3/4
-10	80	60	1/2 - 3/4
-12	115	85	1/3 - 1/2
-16	150	110	1/3 - 1/2
-20	205	150	1/3 - 1/2
-24	315	230	1/3 - 1/2
-32	-	-	-

Note: The assembly torques listed are higher than the test torques published in SAE J1453.

Torque Conversion Equivalents

Torque Conversion Equivalents					
Pound Inch - Pound Foot - Newton Meter					
Pound Foot x 12	=	Pound Inch			
Pound Foot x 1.356	=	Newton Meter			
Newton Meter x 8.850	=	Pound Inch			
Newton Meter x 0.737	=	Pound Foot			
Pound Inch x .083	=	Pound Foot			
Pound Inch x 0.113	=	Newton Meter			

The torque values for other materials are as follows:

- Brass fittings and adapters 65% of the torque value for steel
- Stainless steel, and Monel Use 5% higher than listed for steel.
 Threads to be lubricated for these materials.
- Dissimilar metals use torque value designated for the lower of the two metals.
- · All fittings are dry except as noted above.

E-15

Hose Products Division
Parker Hannifin Corporation