Technical Information (Working Pressure Derating Factor)

To calculate a working pressure derated for elevated temperature, multiply the hose working pressure shown in the catalog by the appropriate derating factor below.

Note: The working pressure of an assembly at elevated temperatures may be affected by fitting type, material, and method of attachment.

	Working Pressure Derating Factor						
Temperature			Carbon				
in Degrees F	T321/T316L	<i>T304</i>	<i>276</i>	Steel	Bronze		
70	1.00	1.00	1.00	1.00	1.00		
150	.97	.96	1.00	.99	.92		
200	.94	.92	1.00	.97	.89		
250	.92	.91	1.00	.96	.86		
300	.88	.86	.94	.93	.83		
350	.86	.85	.92	.91	.81		
400	.83	.82	.90	.87	.78		
450	.81	.80	.90	.86	.75		
500	.78	.77	.89	.81			
600	.74	.73	.84	.74			
700	.70	.69	.79	.66			
800	.66	.64	.76	.52			
900	.62	.58	.74	.50			
1000	.60		.72				
1100	.58		.49				
1200	.55		.32				
1300	.50						
1400	.44						
1500	.40						

Technical Information (Velocity in Metal Hose)

When gas or liquid being conveyed in a corrugated metal hose exceeds certain limits, resonant vibration can occur. Resonance may cause very rapid failure of the assembly. In those applications where product velocities exceed the limits shown in the graph below, a revision of the assembly design might include:

- 1. Addition of an interlocked metal hose liner
- 2. An increase in the corrugated hose I.D.
- 3. A combination of the above

INSTALLATION	MAXIMUM PRODUCT VELOCITY (FEET/SECOND)				
CONFIGURATION	UNBRAIDED		BRAIDED		
COMPANION	DRY GAS	LIQUID	DRY GAS	LIQUID	
STRAIGHT RUN	100	50	150	75	
45 DEGREE BEND	75	40	115	60	
90 DEGREE BEND	50	25	75	40	
180 DEGREE BEND	25	12	38	19	

