Bolting and Flange Information The gasket's function is to seal two different surfaces held together by one of several means, the most common being screw-threaded devices such as bolts. Sometimes the fastener itself must be sealed, as in the case of a steel drum bung. The bolt is a spring. It is an elastic member that has been stretched to develop a load. The more spring provided by the bolt, the better the retention of stress on the gasket to maintain a leakproof joint. It must not be overelongated (over-strained), or the elastic limit of the steel will be exceeded. The bolt then deforms and, with continued loading (stressing), may rupture. To avoid such problems with bolt tightening, the use of a torque wrench is recommended. The torque tables on page C-44 show the recommended torque values for Garlock compressed sheet, GYLON® and GRAPH-LOCK® gasketing materials in 150 lb. and 300 lb. raised face flanges. The equipment designer may specify the recommended torque to prevent damage to the equipment from overtorquing. Garlock's recommended assembly stresses, page C-43, may help the equipment designer determine the maximum allowable torque per bolt. The load will be retained better by using a bolt with a longer grip, thereby ensuring a leakproof joint. There are limits on the degree of flange surface imperfection that can be sealed successfully with a gasket. Large nicks, dents, or gouges must be avoided, since a gasket cannot properly seal against them. The surface finish of a flange is described as follows: - 1. **Roughness**: Roughness is read in millionths of an inch (or meter) as the average of the peaks and valleys measured from a midline of the flange surface. This is expressed either as rms (root mean square) or AA (arithmetic average). The difference between these two methods of reading is so small that they may be used interchangeably. Roughness is also expressed as AARH (arithmetic average roughness height). - 2. **Lay:** Lay is the direction of the predominant surface-roughness pattern. Example: multidirectional, phonographic spiral serrations, etc. - 3. **Waviness:** Waviness is measured in thousandths or fractions of an inch. Basically, it is the departure from overall flatness. Typical roughness readings can be from 125 to 500 micro-inches for serrated flanges and 125-250 micro-inches for non-serrated flanges. Fine finishes, such as polished surfaces, should be avoided. Adequate "bite" in the surface is required to develop enough friction to prevent the gasket from being blown out or from extruding or creeping excessively. The lay of the finish should follow the midline of the gasket if possible. Take, for example, concentric circles on a round flange, or a phonographic spiral. Every effort should be made to avoid lines across the face, such as linear surface grinding, which at 180° points will cross the seal area at right angles to the gasket, allowing a direct leak path. Waviness is seldom a problem under normal conditions. There are two areas that must be watched, however, since excessive waviness is very difficult to handle. The first area is glass-lined equipment where the natural flow of the fused glass creates extreme waviness. Often the answer here is to use thick and highly compressible gasketing. The second area of concern is warped flanges. If warpage is caused by heat or internal stresses, re-machining is generally sufficient. However, warpage due to excessive bolt loads or insufficient flange thickness results in what is generally called bowing. The solution is to redesign for greater flange rigidity. Sometimes backer plates can be added to strengthen the design without having to replace the parts. Another step would be to add more bolts. When this is done, usually smaller bolt diameters are possible, thus adding more bolt stretch and better joint performance. Questions? Call Gasket Applications Engineering at 1-800-448-6688